
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Synthesis, spectral and pharmacological studies on lanthanide(III) complexes of 3,5-pyrazoledicarboxylic acid

Irena Kostova^a; Georgi Momekov^b

^a Faculty of Pharmacy, Department of Chemistry, Medical University, Sofia 1000, Bulgaria ^b Faculty of Pharmacy, Department of Pharmacology and Toxicology, Medical University, Sofia 1000, Bulgaria

To cite this Article Kostova, Irena and Momekov, Georgi(2008) 'Synthesis, spectral and pharmacological studies on lanthanide(III) complexes of 3,5-pyrazoledicarboxylic acid', Journal of Coordination Chemistry, 61: 23, 3776 — 3792 To link to this Article: DOI: 10.1080/00958970802155321 URL: http://dx.doi.org/10.1080/00958970802155321

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, spectral and pharmacological studies on lanthanide(III) complexes of 3,5-pyrazoledicarboxylic acid

IRENA KOSTOVA*† and GEORGI MOMEKOV‡

†Faculty of Pharmacy, Department of Chemistry, Medical University, 2 Dunav St., Sofia 1000, Bulgaria
‡Faculty of Pharmacy, Department of Pharmacology and Toxicology, Medical University, 2 Dunav St., Sofia 1000, Bulgaria

(Received 17 January 2008; in final form 19 March 2008)

Complexes of cerium(III), lanthanum(III) and neodymium(III) with 3,5-pyrazoledicarboxylic acid (H₃pdc) were synthesized and their compositions determined by elemental analysis. To identify the binding of Ce(III), La(III) and Nd(III) with H_3 pdc, detailed vibrational analysis was performed comparing experimental vibrational spectra of the ligand and its Ln(III) complexes with theoretically predicted and with literature data from related compounds. Significant differences in the IR and Raman spectra of the complexes were observed as compared to spectra of the ligand. The ligand and the complexes were tested for cytotoxic activities on the chronic myeloid leukemia derived K-562, overexpressing the BCR-ABL fusion protein and the non-Hodgkin lymphoma derived DOHH-2, characterized by an overexpression of the antiapoptotic protein bcl-2 cell lines. The results indicate that the tested compounds exerted considerable cytotoxic activity upon the evaluated cell lines in a concentration dependent manner; we constructed dose-response curves and calculated corresponding IC_{50} values. The lanthanide complexes exhibited potent cytotoxic activity, even more than cisplatin towards K-562 and DOHH-2 cell lines. In order to elucidate some of the mechanistic aspects of the observed cytotoxic effects, we evaluated whether the established cytotoxicity of the most active complex $La(H_2pdc)$ is related to its capacity to induce cell death through apoptosis.

Keywords: Lanthanide complexes; 3,5-Pyrazoledicarboxylic acid; IR- and Raman-spectra; Cytotoxic activity; DNA

1. Introduction

New metal complexes with 3,5-pyrazoledicarboxylic acid (H_3pdc) have attracted attention due to the interesting properties of H_3pdc , including access to the six coordination sites controlled by varying the pH, allowing control over the synthesis of coordination polymers using various metal centers [1, 2]. A series of M(II) complexes with H_3pdc has been synthesized *via* hydrothermal reactions [3]. Simple mononuclear

^{*}Corresponding author. Email: irenakostova@yahoo.com

[M(II) = Co(II), Zn(II) and Cu(II)] and dinuclear building blocks have been isolated [4]. Hydrothermal reactions of simple alkaline salts or their hydroxides with H₃pdc yielded new coordination compounds at different pH levels [5]; increase in pH resulted in a higher connectivity of the ligand, which in turn leads to a higher dimensionality of the crystal structures. Coordination polymers of UO_2^2 have been prepared and characterized by single-crystal X-ray diffraction, thermogravimetric analyses (TGA) and fluorescence spectroscopy [6]. Rare-earth metal coordination polymers have also been obtained, e.g. ([Eu₂(Hpdc)₃(H₂O)₆] [7]. Lanthanide atom sizes (the lanthanide contraction) directly control the type of structure formed by coordination of a single 3,5-pyrazoledicarboxylic acid [8].

 H_3 pdc can use its carboxylate oxygen and pyrazole nitrogen atoms, which are highly accessible to metals, to form both monodentate and/or multidentate M–O and M–N bonds. The structural motifs thus generated can readily form hydrogen-bonded networks [9, 10]. This ligand possesses three different protonated hydrogens (H_a , H_b , and H_c in figure 1). The difference in these protons allows them to deprotonate at different pH levels. The flexible, multifunctional coordination sites also give likelihood for generation of coordination polymers with high dimensions. "Harder" lanthanide metals coordinate preferably to oxygen, while "softer" nitrogens bind to transition metals.

Although a variety of coordination polymers and complexes of H₃pdc containing transition metals have been synthesized, very few rare-earth metal complexes have been reported. Herein, we report a series of coordination systems containing rare-earth metals and discuss their antiproliferative activity. Little is known about cytotoxic activity of lanthanide(III) coordination compounds with H₃pdc. Our recently published studies on rare-earth metal coordination compounds involving biologically active ligands showed that a number of human tumor cell lines are very sensitive to lanthanide complexes and these metals have different cytotoxic profiles [11–20]. These promising results prompted our search for cytotoxic lanthanide complexes with 3,5-pyrazoledicarboxylic acid.

Thus, the aim of this work was to synthesize and characterize complexes of cerium(III), lanthanum(III) and neodymium(III) with 3,5-pyrazoledicarboxylic acid and to determine the cytotoxic activities of these complexes in *in vitro* tumor test systems as chronic myeloid leukemia derived K-562, overexpressing the BCR-ABL fusion protein and the non-Hodgkin lymphoma derived DOHH-2, characterized by an overexpression of the antiapoptotic protein bcl-2 cell lines.

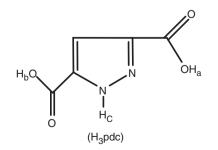


Figure 1. The structure of the ligand 3,5-pyrazoledicarboxylic acid.

2. Experimental

2.1. Chemistry

The compounds used for preparing the solutions were Merck products, p.a. grade: $Ce(NO_3)_3 \cdot 6H_2O$, $La(NO_3)_3 \cdot 6H_2O$ and $Nd(NO_3)_3 \cdot 6H_2O$. 3,5-Pyrazoledicarboxylic acid was used as a ligand for preparation of metal complexes (figure 1).

2.1.1. Physical and spectroscopic measurements. Carbon, hydrogen and nitrogen contents of the compounds were determined by elemental analysis. The water content was determined by Metrohn Herizall E55 Karl Fisher Titrator.

The solid-state infrared spectra of the ligands and their complexes were recorded in KBr from 4000–400 cm⁻¹ by FT-IR 113V Bruker spectrometer, in Nujol by IR-spectrometer FTIR-8101M Shimadzu and in the range $700-200 \text{ cm}^{-1}$ by IR-spectrometer Perkin-Elmer GX Auto image system.

The Raman spectra of the compounds were recorded with a Dilor Labram microspectrometer (Horiba-Jobin-Yvon, model LabRam) equipped with a $1800 \text{ grooves mm}^{-1}$ holographic grating. The 514.5 nm line of an argon ion laser (Spectra Physics, model 2016) was used for the probe excitation. The spectra were collected in a backscattering geometry with a confocal Raman microscope equipped with an Olympus LMPlanFL 50x objective and with a resolution of 2 cm^{-1} . The detection of Raman signal was carried out with a Peltier-cooled CCD camera. Laser power of 100 mW was used in our measurements.

2.1.2. General method of synthesis. The complexes were synthesized by reaction of cerium(III), lanthanum(III) and neodymium(III) salts, and the ligand in molar ratio of 1:2. Different ratios (1:1, 1:2, 1:3) were tried, but in all cases the product had composition 1:2. The complexes were prepared by adding an aqueous solution of cerium(III), lanthanum(III) and neodymium(III) salt to an aqueous solution of the ligand and raising the pH of the mixture gradually to ca 5.0 by adding dilute sodium hydroxide. The reaction mixture was stirred with an electromagnetic stirrer at 25° C for one hour. At the moment of mixing the solutions, precipitates were obtained. The precipitates were filtered (pH of the filtrate was 5.0), washed several times with water and dried in a desiccator to constant weight. The complexes were insoluble in water, methanol and ethanol and soluble in DMSO.

2.2. Pharmacology

In the present study we investigated the cytotoxic effects of the three newly synthesized lanthanide complexes using the standard MTT-dye reduction assay for cell viability. The cytotoxic effects of the tested lanthanide complexes were assessed on the chronic myeloid leukemia derived K-562, overexpressing the BCR-ABL fusion protein and the non-Hodgkin lymphoma derived DOHH-2, characterized by an overexpression of the antiapoptotic protein bcl-2 cell lines. In order to elucidate some of the mechanistic aspects of the observed cytotoxic effects, we evaluated whether the established cytotoxicity of the most active complex $La(H_2pdc)$ is related to its capacity to induce cell death through apoptosis.

2.2.1. Cell culture maintenance, drug solutions and treatment. The cell culture flasks and the 96-well microplates were obtained from NUNCLON (Denmark). MTT, FCS and cisplatin were purchased from Sigma Co.

In this study the cell lines were grown as suspension-type cultures in a controlled environment, RPMI 1640 medium (Sigma), with 10% heat inactivated fetal bovine serum (Sigma) and 2mM L-glutamine (Sigma), in a "Heraeus" incubator with humidified atmosphere and 5% carbon dioxide, at 37°C. In order to maintain the cells in log phase, cell suspension was discarded two or three times per week and the cell culture was re-fed with fresh RPMI-1640 aliquots.

The stock solutions of tested compounds (20 mM) were freshly prepared in DMSO, and thereafter, diluted in RPMI-1640 medium in order to achieve the desired final concentrations. The serial dilutions of tested compounds were prepared immediately before use. At the final dilutions, the concentration of DMSO never exceeded 1%. The solutions were stored at 4°C, protected from light for a maximum of 1 week. The cell culture maintenance, the drug solution preparation, as well as the treatment procedures, were performed in a "Heraeus" Laminar flow cabinet.

2.2.2. Cell viability determination (MTT assay). The cell viability was determined using the MTT-dye reduction assay. Briefly, exponentially growing cells were seeded in 96-well microplates $(100 \,\mu\text{L well}^{-1})$ at a density of 1×10^5 cells per mL; after 24 h incubation at 37°C they were exposed to various concentrations of the lanthanide complexes for 48 h. After the incubation with the test compounds MTT solution $(10 \,\text{mg mL}^{-1} \text{ in PBS})$ was added $(10 \,\mu\text{L well}^{-1})$. The plates were further incubated for 4h at 37°C and the formazan crystals formed were dissolved through addition of $100 \,\mu\text{L well}^{-1}$ 5% solution of formic acid in 2-propanol (Merck). The absorption of the samples was then measured using an ELISA reader (Uniscan Titertec) at 580 nm. The blank solution consisted of $100 \,\mu\text{L}$ RPMI 1640 medium (Sigma), $10 \,\mu\text{L}$ MTT stock and $100 \,\mu\text{L}$ 5% formic acid in 2-propanol. The survival fractions were calculated as percentage of the untreated control using the formula:

$$SF\% = \frac{A_{\text{test}}}{A_{\text{control}}} \times 100$$

where A_{test} is the average value for the absorption at a given concentration and A_{control} is the average absorption of the untreated control, respectively.

2.2.3. Apoptosis assay. The oligonucleosomal fragmentation of genomic DNA, which is characteristic for the apoptotic process, was detected using a 'Cell Death Detection' ELISA kit (Roche Diagnostics, Germany). K-562 cells were exposed to equitoxic concentrations (IC_{50}) of La(H_2pdc) or cisplatin for 24 h. Cytosolic fractions of 1×10^4 cells per group (treated or untreated) served as an antigen source in a sandwich ELISA, utilizing primary anti-histone antibody-coated microplate and a secondary peroxidase-conjugated anti DNA-antibody. The photometric immunoassay for histone-associated DNA fragments was executed using a microprocessor-controlled microplate reader (Labexim LMR-1). The results were expressed as the oligonucleo-some enrichment factor (representing a ratio between the absorption in the treated versus the untreated control samples).

		С	alculated/Found	(%)	
Compound formula	С	Н	Ν	H ₂ O	Ln
$\begin{array}{c} Ce(H_2pdc)_2(OH) \cdot 4H_2O \\ La(H_2pdc)_2(OH) \cdot 4H_2O \\ Nd(H_2pdc)_2(OH) \cdot 4H_2O \end{array}$	20,86/20,80 20,90/20,79 20,72/20,71	2,61/2,67 2,61/2,64 2,59/2,41	9,74/9,85 9,76/9,75 9,67/10,16	12,52/12,05 12,54/12,08 12,43/12,15	24,35/23,93 24,22/23,87 24,87/24,56

Table 1. Elemental analysis of Ln(III) complexes of 3,5-pyrazoledicarboxylic acid.

 $H_3pdc = C_5H_4N_2O_2; H_2pdc = C_5H_3N_2O_2^-.$

2.2.4. Statistics. The data processing included the Student's *t*-test with $p \le 0.05$ taken as significance level using Microsoft EXCEL for PC, and the plots were generated using Microcal Origin, version 3.5.

3. Results and discussion

3.1. Chemistry

The compositions of the new complexes were characterized by elemental analysis. The metal ions were determined after mineralization. The water content in the complexes was determined by Karl Fisher analysis. The elemental analyses and the results of the Karl Fisher analysis are presented in table 1.

In the syntheses, the ligand was first deprotonated with sodium hydroxide and the corresponding anionic species are active in reaction with lanthanide ions. The H_c in this ligand (figure 1) on the nitrogen of the pyrazole ring is more difficult to deprotonate than the two carboxylate protons. Thus, carboxylate oxygens are the preferred sites for coordination to Ln(III) ions. Although H_a and H_b are both attached to carboxylic oxygen atoms, H_a can be deprotonated more easily, allowing the oxygen to form a chelating bond to a metal center. This will be checked by a detailed and comparative vibrational study of the ligand and its Ln(III) complexes.

3.2. Vibrational analysis of H_3 pdc and its Ce(III), La(III) and Nd(III) complexes

The bonding of the ligand to Ce(III), La(III) and Nd(III) was elucidated by recording the IR and Raman spectra of the complexes as compared with those of the free ligand. The vibrational fundamentals from the IR and Raman spectra (figures 2 and 3) were analyzed by comparing these modes with those from the literature [21] in combination with the results of our DFT calculations (i.e., harmonic vibrational wavenumbers and their Raman scattering activities) [22]. In tables 2(a) and 2(b) selected, calculated and experimental IR and Raman data together with tentative assignments are given. All the calculated modes are numbered from the largest to the smallest frequency within each fundamental wavenumber. The last columns in tables 2(a) and 2(b) respectively show the approximate description of the normal modes according to the B3PW91 and B3LYP methods [22]. A survey of the last column shows that many vibrations are complex and involve strongly coupled motions. The assignments have been given by studying literature reports [23] and comparing the spectra of the ligand and of the

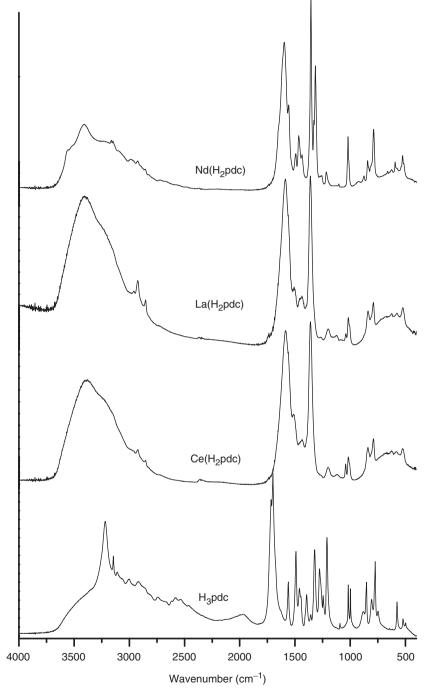


Figure 2. IR spectra of H₃pdc and its Ce(III), La(III) and Nd(III) complexes.

Absorbance

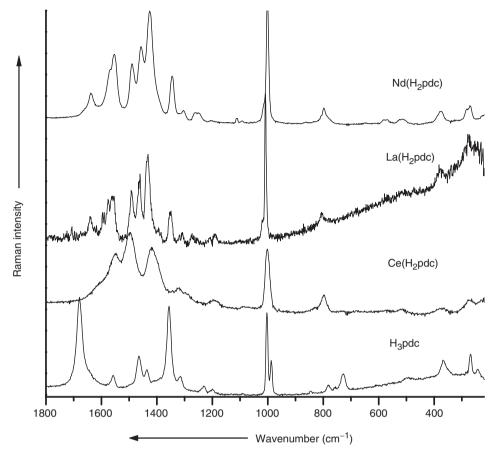


Figure 3. Raman spectra of solid state of H_3pdc and its Ce(III), La(III) and Nd(III) complexes. Excitation: 514.5 nm, 50 mW.

metal complexes. We emphasize that some stretching and deformation modes are coupled so that the proposed assignments should be regarded as approximate descriptions of the vibrations.

To illustrate the vibrational behavior of the ligand upon the metal coordination we present the FT-IR spectra in the $4000-500 \text{ cm}^{-1}$ range (figure 2), as well as the Raman spectra of the investigated compounds in the $1800-200 \text{ cm}^{-1}$ range (figure 3). Both the IR and the Raman spectra were considered for full description of the vibrational behavior of the investigated species. Below we discuss characteristic vibrational modes of the ligand changes upon complexation with Ln(III).

3.2.1. O–**H** stretching modes, v(OH). According to the calculations, the IR band at 3220 cm⁻¹ for the ligand is assigned to the O–H stretching mode [22], shifted to lower wavenumbers due to intramolecular O···H–O bonds. In the $v(OH)/H_2O$ region the spectra of Ce(III), La(III) and Nd(III) complexes show one medium band at about 3230 cm⁻¹, attributed to coordinated water. This band overlaps with $v(NH_2)$.

2011
January
23
09:23
At:
Downloaded

Table 2(a). Calculated and experimental IR wavenumbers (cm $^{-1}$) of H_3 pdc and its Ce(III), La(III) and Nd(III) complexes and their tentative assignments.

	Calculated	ted [22]						
B3]	B3PW91	B3)	B3LYP		Exper	Experimental		
LANL2DZ	6-311++G**	LANL2DZ	6-311++G**	H ₃ pdc	Ce(H ₂ pdc)	La(H ₂ pdc)	Nd(H ₂ pdc)	Vibrational assignment
3347		3331		3353 sh	3378 s	3405 vs	3404 ms	μ(NH)
	3294		3285	3220 s	3228 sh	3229 sh		v(OH)
				3144 wm	3165 sh	3159 sh	3163 wm	v(CH)
				3109 w	3101 sh		3092 sh	v(CH)
				3064 sh	3070 sh	3088 sh		v(CH)
				3002 w	$3003 ext{ sh}$	2961 vw	2984 w	ν (=C-H)
				2920 w	2924 vw	2924 wm	2924 w	$\nu(CH)$
				2876 sh	2854 vw	2853 w	2855 w	ν (C–C–H)
				1968 w				$v_{asym}(COO)$
1716		1698		1717 vs		1735 vw		$\nu_{\rm svm}(\rm COO)$
1710		1692		1700 vs				$\nu_{\rm asym}(C=O)$
				1633 sh				$\nu_{\rm svm}(C=0)$
1601	1604	1585	1590	1560 m	1585 vs	1587 vs	1596 s	$v_{\rm sym}({\rm ring})$
1524	1519		1501	1492 s	1513 m		1494 w	$\delta_{in}(ring)$
1459	1476	1507	1457	1460 m		1508 m	1467 m	v(N=N); v(ring)
1436	1450	1440	1433		1438 wm		1437 wm	$\nu(\text{ring})$
1375	1383	1420		1395 sh		1438 m		$\nu(ring)$
								(continued)

3,5-pyrazoledicarboxylic acid

	Calculated [22]	ted [22]						
B3PW91	W91	B31	B3LYP		Experi	Experimental		
LANL2DZ	6-311++G**	LANL2DZ	6-311++G**	H ₃ pdc	Ce(H ₂ pdc)	La(H ₂ pdc)	Nd(H ₂ pdc)	Vibrational assignment
1332	1350	1357	1363	1357 m	1361 vs	1361 vs	1356 vs	ν(ring); δ (C–OH)
1332		1320	1337	1322 s			1315 s	$\nu(C-0)$
1281	1288	1270	1279	1278 ms		1266 vw	1272 w	$\delta_{op}(CH)$
1222	1244		1225	1244 m				$\delta_{in}(CH); \nu(COC)$
1222	1188	1200	1181	1210 s	1200 w	1199 w	1217 w	$\nu_{\rm svm}(C=0)$
1158	1168	1153	1152			1123 vw		$\delta_{\rm in} \rm NH; \ \nu(\rm ring)$
1081	1092	1090	1089	1094 w	1043 m	1041 w	1104 vw	$\nu(\text{ring}); \nu(\text{CH})$
1021	1030	1012	1025	1018 m	1017 m	1017 wm	1019 m	$\delta_{\rm ip}({\rm CH}); \delta_{\rm op}$
								$(CH); \nu(ring)$
984	866	976	994	998 m				$\delta_{ib}(ring)$
	884		885	881 wm			875 vw	$\delta_{op}(CH); \delta_{op}$ (ring)
				852 m	840 m	838 wm	843 wm	$\delta_{op}(CH)$
794	L97	787	792	806 wm	790 m		48 908 sh	$\delta_{op}(CH)$
777	6 <i>L</i> L	766	773	772 ms		790 m	788 m	$\delta_{op}(CH)$
771	733	759	773	747 wm				$\delta_{op}(CH)$
713	716	708	729			625 w		δ(OCO)
585	571	579	609	577 m	581 w	578 w	593 w	$\delta_{op}(ring)$
555	552	552	547	522 w	527 w	524 w	526 w	δ _{op} (NH)
495	504	492	502		508 sh		515 sh	v(M-O)
445	460	443	458	499 w		475 sh	452 wv	8(OCO)
Abbreviations: vw in _ in_nlane: on _	Abbreviations: vw – very weak; w – weak; in – in alone: on – out of alone: M – metal	eak; m – medium; m	1s – medium strong; s	s – strong; vs – very	strong; sh - should	er; v – stretching; δ	- bending; sym - sy	Abbreviations: vw - very weak; w - weak; m - medium; ms - medium strong; s - strong; vs - very strong; sh - shoulder; v - stretching; δ - bending; sym - symmetric; asym - asymmetric;

Table 2(a). Continued.

Downloaded At: 09:23 23 January 2011

3784

I. Kostova and G. Momekov

B3I	B3PW91	B31	B3LYP		Experime	Experimental solid		
LANL2DZ	6-311++G**	LANL2DZ	6-311++G**	H ₃ pdc	Ce(H ₂ pdc)	La(H ₂ pdc)	Nd(H ₂ pdc)	Vibrational assignment
3348		3332					3417 vw	ν(NH)
	3295		3285					ν(OH)
				3137 m	3139 wm	3160 sh	3145 wm	ν(CH)
				3111 w		3142 w		v(CH)
				3071 w			3071 w	v(CH)
							1996 sh	$\nu_{\rm asym}({ m COO})$
1710		1698		1679 vs				$\nu_{\rm asym}(C=0)$
1601		1691		1641 sh	$1620 \mathrm{sh}$	1634 w	1637 wm	$v_{\text{svm}}(C=0)$
1524	1604	1585	1590	1558 w	1549 s	1570 sh	1554 s	$v_{\rm sym}(\rm ring)$
	1476	1507	1501		1498 vs		1489 ms	$\delta_{in}(ring)$
1459	1450	1440	1457	1464 m		1458 m	1457 s	v(N=N); v(ring)
1436		1420	1433	1436 w/m	1418 s	1426 s	1426 vs	$\nu(\text{ring})$
1375		1357	1363	1356 vs		1343 m	1346 ms	ν (ring); δ (C–OH)
1332	1350	1320	1337	1316 w	1322 m	1317 vw	1305 w	v(C-0)
1280	1288	1270	1279		1299 sh	1264 vw		δ _{ob} (CH)
1222	1244		1225	1231 w	1257 sh		1260 w	$\delta_{in}(CH); \nu(COC)$
	1188	1200	1181	1201 w	1195 wm		1204 vw	$\nu_{\rm svm}(C=0)$
1158	1168	1153	1152	1133 vw			1112 vw	$\delta_{\rm in}$ NH; $\nu(\rm ring)$
1081	1092	1090	1089	1090 vw	1089 vw		1093 vw	ν (ring); ν (CH)
1021	1030	1012	1025	1003 s	1002 s	1002 s	1002 vvs	$\delta_{ip}(CH); \delta_{op}(CH); \nu(ring)$
984	866	976	994	988 ms				$\delta_{ip}(ring)$
	884		885	897 vw				$\delta_{\rm op}({\rm CH}); \delta_{\rm op}({\rm ring})$
				844 vw	857 sh		863 vw	$\delta_{ m op}(m CH)$
	797	787	792		798 m		798 wm	$\delta_{ m op}(m CH)$
794	779	766	773	782 vw		801 w		$\delta_{ m op}(m CH)$
771		759		756 sh				$\delta_{ m op}(m CH)$
713	733	708	729	729 w/m	730 vw/680	654 vw	648 vw	δ(OCO)
585	571	579	609	605 vw	572 vw	563 vw	572 w	$\delta_{\mathrm{op}}(\mathrm{ring})$
555	552	552	547		518 w	513 vw	515 w	v(M-O)
323	328	322	326	366 m	368 w	343 vw	376 wm	v(M-O)
217	222	218	224		210 wm	224 sh	212 sh	v(O-M-O)

3,5-pyrazoledicarboxylic acid

Table 2(b). Calculated and experimental Raman wavenumbers (cm^{-1}) of H₃pdc and its Ce(III), La(III) and Nd(III) complexes and their tentative assignments.

2011
January
23
09:23
At:
Downloaded

3785

The assignment of O–H and N–H stretching bands overlapped in the same spectral region is rather difficult, and the involvement of these groups in hydrogen bonds affects their wavenumbers and produces broadening in the IR and Raman spectra.

3.2.2. Vibrational modes of the carbonylic C=O and carboxylic COOH groups. The most informative for the metal-ligand binding mode in the Ln(III) complexes is the ν (C=O). According to our DFT calculations [22], bands in the 1720–1630 cm⁻¹ region were assigned to the asymmetric and symmetric stretching vibration of the carboxylic and carbonylic groups. Some of these stretching modes are active in the IR spectra and others are active in the Raman spectra. The strong IR bands at 1717, 1700 and 1633 cm⁻¹ and the Raman bands at 1679 and 1641 cm⁻¹ were assigned to ν (C=O) modes of the carboxylic and carbonylic groups in the ligand, respectively [tables 2(a) and 2(b)]. In general, strong peaks in the spectra of the complexes around 1600–1400 cm⁻¹ are characteristic of asymmetric and symmetric vibrations for uni and bidentate carboxylate groups. The difference, $\Delta \nu$, between the asymmetric and symmetric COO⁻ stretching frequencies is greater in complexes than in simple salts. Bidentate binding of the COO⁻ group in the complexes was suggested, as reported in the literature [8].The structure of the complexes is presented in figure 4.

According to our calculations [22], bands at 1322 (IR) and 1316 (Raman) cm⁻¹ for the ligand were assigned to ν (C–O) with low intensity in the Raman spectra. The bands around 1200 cm⁻¹, weak in IR and very weak in Raman, were attributed to the asymmetrical C–O stretching and were slightly changed in the complexes.

3.2.3. N–H and C–H stretching modes. Stretching vibrations around 3500 cm^{-1} in all spectra are attributed to secondary aromatic amine. In the $3600-2700 \text{ cm}^{-1}$ region the

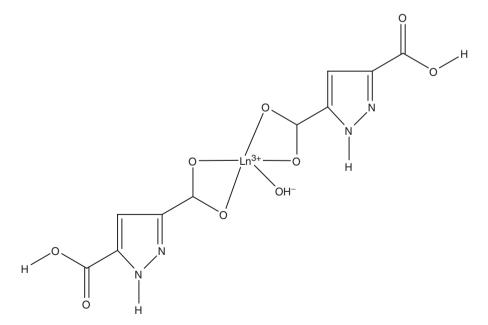


Figure 4. The proposed structure of the lanthanide(III) complexes with 3,5-pyrazoledicarboxylic acid.

N–H stretching mode is a shoulder at 3353 cm^{-1} for H₃pdc, and a strong or medium strong band for the Ce complex (3378 cm^{-1}), La complex (3405 cm^{-1}) and Nd complex (3404 cm^{-1}). The out of plane NH bending modes in the IR spectra, H₃pdc (522 cm^{-1}), Ce complex (527 cm^{-1}), La complex (524 cm^{-1}) and Nd complex (526 cm^{-1}) are absent in the Raman spectra. The absence of large systematic shifts of these bands in the spectra of the complexes implies that there is no interaction between the amino nitrogen and the lanthanide(III).

Bands around 3100 cm^{-1} can be attributed to C–H stretching. The wavenumber region $2700-2500 \text{ cm}^{-1}$ in IR and Raman spectra is typical of strong hydrogen bonded intermolecular complexes due to a strong anharmonic coupling (Fermi resonance) of the NH stretching vibrations with overtones and combinations of lower frequency modes of the bonded molecules [22].

3.2.4. Ring stretching modes, v(CC). Coordination of Ln(III) to the carboxylate oxygens affected to some extent the IR and Raman bands of pyrazole-ring modes. In the IR spectra of H₃pdc, and its Ce, La and Nd complexes, medium and very strong bands at 1560, 1585, 1587 and 1596 cm⁻¹ were assigned to the symmetric stretching mode of the pyrazole ring, while in Raman spectra this vibration is a weak peak at 1558 cm⁻¹ for the ligand, and strong bands at 1549, 1570 and 1554 cm⁻¹ for the Ce, La and Nd complexes, respectively. Other bands from pyrazol ring stretching modes in the IR spectra are at 1460, 1395, 1357 cm^{-1} (for the H₃pdc), 1438, 1361 cm^{-1} (for the Ce complex), 1438, 1361 cm^{-1} (for the La complex) and 1437, 1356 cm^{-1} (for the Nd complex), shifted to lower wavenumbers (tables 2a and 2b). The in-plane bending of the pyrazole ring can be observed at 1500 cm^{-1} in the IR and Raman spectra can be assigned to out of plane pyrazole ring bending. Bands for the pyrazole-ring vibrations were not shifted significantly in the spectra of Ce(III), La(III) and Nd(III) complexes, indicating that Ln(III) did not produce substantial polarization on the pyrazole ring.

bending δ(CCH) and ring in-plane 3.2.5. CH modes, and out-of-plane deformations. The CH in-plane bending modes, $\delta(CH)_{ip}$, were observed at their usual positions in the $1250-1020 \text{ cm}^{-1}$ region, stronger in the Raman than in the IR spectra. Medium IR bands in the $880-750 \text{ cm}^{-1}$ region were assigned to out-of-plane deformation vibrations of the hydrogen atoms in the ring, $\delta(CH)_{op}$. The bands due to the CH bending modes and to ring deformations are slightly changed in spectra of the complexes. The assignment of IR and Raman bands in this spectral range is difficult because highly coupled modes and combination bands overlap with those due to fundamentals, distorting the observed bands.

3.2.6. Ln–O stretching and O–Ln–O bending modes. The spectra in the region below 600 cm^{-1} are particularly interesting since they provide information about the metal-ligand vibrations. The Raman spectra are particularly useful in studying the metal-oxygen stretching vibrations, with medium intensity bands that are weak in the infrared spectra.

New bands at about $510-520 \text{ cm}^{-1}$, which appear in the IR and Raman spectra of the Ce, La and Nd complexes, are due to metal-oxygen vibrations. In the low wavenumber

region in the Raman spectrum of H_3pdc (figure 3) we observe a medium band at 366 cm^{-1} , which is slightly shifted in Raman spectra of the Ce, La and Nd complexes and becomes weaker.

The metals interact with symmetric, bidentate carboxylate anions and both oxygen atoms of the carboxylate are symmetrically bonded to the metal. We observe in the Raman spectra of the Ce, La and Nd complexes bands at $210-220 \text{ cm}^{-1}$, perhaps due to O–M–O vibrations. Because of the predominant electrostatic character of the Ln–O bonding, the ν (Ln–O) modes have low intensities and are coupled with other modes; hence, their assignment is very difficult. Our previous calculations [14] predict that bands due to ν (Ln–O)_{water} and ν (Ln–O)_{OH} should also appear about 200 cm⁻¹.

Unfortunately, we were not able to obtain suitable single crystals for X-ray diffraction determination of the crystal and molecular structure of the complexes studied. Therefore, molecular modeling of the molecular structure was used to suggest the type of the metal coordination. In our previous investigation, we performed an accurate density functional theory study (DFT) of the ligand [22]. The results showed the most probable site for metal binding are the carboxylate oxygens. Our IR and Raman spectral data confirmed that carboxylate oxygens coordinate to the metal ion. Thus, on the basis of the experimental and theoretical results, we suggest the metal ion coordinates to the carboxylate after deprotonation of Ha (figure 1). The other carboxylic groups of the ligands can coordinate with another metal ion, forming a polymeric structure in accord with previous published data on related compounds [7–10, 24].

3.3. Pharmacology

3.3.1. *In vitro* cytotoxicity. The screening performed revealed that all lanthanide complexes evaluated exerted cytotoxic effects against the chronic myeloid leukemia derived K-562, overexpressing the BCR-ABL fusion protein and the non-Hodgkin lymphoma derived DOHH-2, characterized by an overexpression of the antiapoptotic protein bcl-2 cell lines in a concentration dependent manner, which enabled construction of concentration response curves (a sample is shown in figure 5; all are in Supplementary Material), tables 3–6. The corresponding Ln(III) nitrate salts were inactive in the investigated concentration range [11–20].

The newly reported compounds inhibit the proliferation of K-562 cells significantly, outclassing cisplatin in terms of the IC_{50} values obtained. Indeed this CML-derived cell line is characterized via a high expression of the fusion protein BCR-ABL [25], which is a constitutive non-receptor tyrosine kinase rendering K-562 less responsive to chemotherapeutic agents and other pro-apoptotic stimuli [26]. Unlike cisplatin, however, the cytotoxic efficacy of the novel complexes was not influenced by the BCR-ABL over expression and caused 50% inhibition of the malignant cell growth at substantially lower concentrations than cisplatin.

Even more intriguing discrepancy between the cytotoxic efficacy of the lanthanide complexes and cisplatin was encountered in DOHH-2 cells. Notwithstanding the practically equivalent relative potencies (in terms of IC_{50}) the new complex compounds caused almost total eradication of DOHH-2 within the higher concentrations exploited, while the efficacy of cisplatin reached a plateau with more than 30% viable cells even at the highest concentration exploited (200 µM), generally ascribed to the well-established

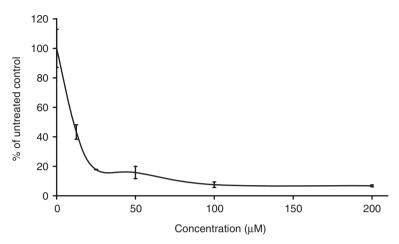


Figure 5. Cytotoxic effects of $Ce(H_2pdc)_2(OH) \cdot 4H_2O$ on the chronic myeloid leukemia-derived K-562 cell line after 48 h exposure, as assessed by the MTT-dye reduction assay. Each data point represents the mean \pm SD ($n \ge 6$).

Table 3. Spectrophotometric data from the MTT assay concerning the cytotoxic effects of the compounds on K-562 cells.

		MTT	-formazan abso	orption at 580	0 nm	
Cell line	Untreated control	12.5 µM	25 µM	50 µM	100 µM	200 µM
$C_5H_4N_2O_2$	0.48 ± 0.04	0.40 ± 0.02	0.46 ± 0.03	0.37 ± 0.02	0.42 ± 0.01	0.20 ± 0.02
$Ce(H_2pdc)_2(OH) \cdot 4H_2O$	0.62 ± 0.08	0.110 ± 0.001	0.110 ± 0.001	0.10 ± 0.02	0.05 ± 0.01	0.04 ± 0.004
$La(H_2pdc)_2(OH) \cdot 4H_2O$	0.62 ± 0.08	0.25 ± 0.02	0.07 ± 0.01	0.06 ± 0.01	0.05 ± 0.03	0.05 ± 0.005
$Nd(H_2pdc)_2(OH) \cdot 4H_2O$	0.62 ± 0.08	0.29 ± 0.01	0.07 ± 0.01	0.05 ± 0.01	0.04 ± 0.02	0.04 ± 0.01
Cisplatin	0.81 ± 0.04	0.73 ± 0.03	0.57 ± 0.05	0.23 ± 0.02	0.18 ± 0.02	0.09 ± 0.03

 Table 4.
 Spectrophotometric data from the MTT assay concerning the cytotoxic effects of the compounds on DOHH-2 cells.

		MT	Γ-formazan al	bsorption at 5	80 nm	
Cell line	Untreated control	12.5 µM	25 µM	50 µM	100 µM	200 µM
	$\begin{array}{c} 0.25 \pm 0.02 \\ 1.13 \pm 0.07 \\ 1.13 \pm 0.07 \\ 1.23 \pm 0.12 \\ 1.26 \pm 0.07 \end{array}$	$\begin{array}{c} 0.10\pm 0.01\\ 0.38\pm 0.02\\ 0.32\pm 0.07\\ 0.46\pm 0.06\\ 0.49\pm 0.05 \end{array}$	$\begin{array}{c} 0.09 \pm 0.01 \\ 0.24 \pm 0.06 \\ 0.19 \pm 0.08 \\ 0.40 \pm 0.06 \\ 0.45 \pm 0.05 \end{array}$	$\begin{array}{c} 0.09 \pm 0.01 \\ 0.18 \pm 0.06 \\ 0.07 \pm 0.03 \\ 0.13 \pm 0.07 \\ 0.45 \pm 0.04 \end{array}$	$\begin{array}{c} 0.09 \pm 0.003 \\ 0.09 \pm 0.03 \\ 0.04 \pm 0.02 \\ 0.05 \pm 0.02 \\ 0.46 \pm 0.04 \end{array}$	$\begin{array}{c} 0.000\\ 0.05\pm 0.01\\ 0.03\pm 0.03\\ 0.05\pm 0.01\\ 0.40\pm 0.06\end{array}$

high level of bcl-2 expression in DOHH-2 cells [25]. This anti-apoptotic protein abolishes several of the cell-death signaling pathways, which are involved in the cytotoxic action of cisplatin, and conversely higher levels of bcl-2 are well established to confer resistance to platinum-based drugs [27–29]. The superior inhibition of DOHH-2

Compound	IC ₅₀ value
$\begin{array}{l} C_{5}H_{4}N_{2}O_{2} \\ Ce(H_{2}pdc)_{2}(OH) \cdot 4H_{2}O \\ La(H_{2}pdc)_{2}(OH) \cdot 4H_{2}O \\ Nd(H_{2}pdc)_{2}(OH) \cdot 4H_{2}O \\ Cisplatin \end{array}$	>200 μM 11.01 μM 10.50 μM 11.74 μM 36.68 μM

Table 5. Relative potency of the investigated compounds in the panel of human tumor cell line K-562, following 48 h treatment cells.

Table 6. Relative potency of the investigated compounds in the panel of human tumor cell line DOHH-2, following 48 h treatment cells.

Compound	IC ₅₀ value
$C_5H_4N_2O_2$	12 µM
$Ce(H_2pdc)_2(OH) \cdot 4H_2O$	9.44 μM
$La(H_2pdc)_2(OH) \cdot 4H_2O$	8.75 µM
$Nd(H_2pdc)_2(OH) \cdot 4H_2O$	9.92 µM
Cisplatin	10.25 µM

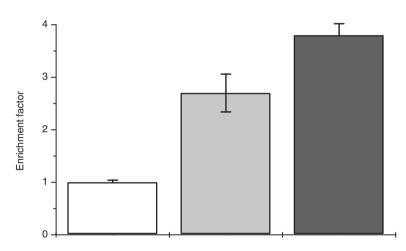


Figure 6. Cytosolic enrichment of K-562 with oligonucleosomal DNA fragments, following a 24 h exposure to equitoxic concentrations (IC₅₀) of cisplatin (gray column) or La(H₂pdc) (black column) vs. the untreated control (white column). The results represent the arithmetic means (\pm SD) of four independent experiments.

proliferation by the lanthanide compounds implies that this class of tumor-inhibiting metal coordination compounds bypass the bcl-2 mechanisms of cellular resistance.

3.3.2. Apoptosis induction. The ability of anticancer agents to recruit the apoptotic cell death signaling pathways plays a crucial role in their cytotoxic mode of action. We evaluated whether the established cytotoxicity of $La(H_2pdc)$ is related to its capacity to induce cell death through apoptosis. Thus, the level of oligonucleosomal DNA fragmentation following 24 h exposure was monitored using a commercially available ELISA-kit. As evident from the results summarized in figure 6, both the most active

complex La(H_2pdc) and cisplatin led to significant enrichment of K-562 cytosole with mono- and oligonucleosomal DNA fragments, whereby the fragmentation of genomic DNA was even more prominent after exposure to the lanthanum complex.

We have previously reported that the cytotoxicity of diverse lanthanide complexes is mediated through apoptosis induction and the results from this study corroborate the generality of this phenomenon. The prominent proapoptotic activity of $La(H_2pdc)$ in K-562 is of special interest, taking into account the fact that this cell line is characterized via the strong expression of the non-receptor protein kinase BCR-ABL which endows them with low responsiveness to diverse proapoptotic stimuli, including chemotherapeutic agents.

4. Conclusions

The vibrational properties of 3,5-pyrazoledicarboxylic acid and its Ln(III) complexes have been investigated by FT-Raman and FT-IR spectroscopies and supported by previously published theoretical calculations [22]. The difference between observed and calculated wavenumber values of most of the fundamental modes is very small. Vibrational evidence for bidentate coordination of carboxylic oxygens to the Ce(III), La(III) and Nd(III) ions was found. On the basis of the above detailed vibrational study we were able to suggest the most probable structural formula of the investigated complexes (figure 4).

All of the newly synthesized Ln(III) complexes exhibited cytotoxic activity in micromolar concentrations. These results confirmed our previous observations on the cytotoxicity of lanthanide(III) complexes as well as on their possible mechanism of action. Taken together the results from the cytotoxicity screening suggest that lanthanide(III) complexes with 3,5-pyrazoledicarboxylic acid, being very active cytotoxic agents, necessitate further pharmacological evaluation.

References

- [1] N. Ching, L. Pan, X.Y. Huang, J. Li. Acta Crystallogr. C, 56, 1124 (2000).
- [2] A.M. Beatty, K.E. Granger, A.E. Simpson. Chem. Eur. J., 8, 3254 (2002).
- [3] L. Pan, N. Ching, X. Huang, J. Li. Chem. Eur. J., 7, 4431 (2001).
- [4] P. King, R. Clérac, C.E. Anson, A.K. Powell. Dalton Trans., 6, 852 (2004).
- [5] L. Pan, T. Frydel, M.B. Sander, X. Huang, J. Li. Inorg. Chem., 40, 1271 (2001).
- [6] M. Frisch, C.L. Cahill. Dalton Trans., 8, 1518 (2005).
- [7] L. Pan, X. Huang, J. Li, Y. Wu, N. Zheng. Angew. Chem., 112, 537 (2000).
- [8] L. Pan, X. Huang, J. Li, Y. Wu, N. Zheng. Angew. Chem. Int. Ed., 39, 527 (2000).
- [9] L. Pan, X. Huang, J. Li. J. Solid State Chem., 152, 236 (2000).
- [10] L. Pan, N. Ching, X. Huang, J. Li. Inorg. Chem., 39, 5333 (2000).
- [11] I. Kostova, G. Momekov. Appl. Organomet. Chem., 21, 226 (2007).
- [12] I. Kostova, V.K. Rastogi, W. Kiefer, A. Kostovski. Appl. Organomet. Chem., 20, 483 (2006).
- [13] I. Kostova, I. Manolov, I. Nicolova, S. Konstantinov, M. Karaivanova. Eur. J. Med. Chem., 36, 339 (2001).
- [14] I. Georgieva, I. Kostova, N. Trendafilova, V.K. Rastogi, G. Bauer, W. Kiefer. J. Raman Spectrosc., 37, 742 (2006).
- [15] I. Kostova, I.I. Manolov, G. Momekov. Eur. J. Med. Chem., 39, 765 (2004).
- [16] I. Kostova, N. Trendafilova, G. Momekov. J. Inorg. Biochem., 99, 477 (2005).
- [17] I. Kostova, G. Momekov, M. Zaharieva, M. Karaivanova. Eur. J. Med. Chem., 40, 542 (2005).

- [18] I. Kostova, R. Kostova, G. Momekov, N. Trendafilova, M. Karaivanova. J. Tr. Elem. Med. Biol., 18, 219 (2005).
- [19] I. Kostova, N. Trendafilova, T. Mihailov. Chem. Phys., 314, 73 (2005).
- [20] I. Kostova, V.K. Rastogi, W. Kiefer, A. Kostovski. Arch. Pharm. Pharm. Med. Chem., 339, 598 (2006).
- [21] S.D. Robinson, M.F. Utley. J. Chem. Soc., Dalton Trans., 1914 (1973).
- [22] N. Peica, I. Kostova, W. Kiefer. Chem. Phys., 325, 411 (2006).
- [23] V.R. Thalladi, M. Nusse, R. Boese. J. Am. Chem. Soc., 122, 9227 (2000).
- [24] X.H. Li. Acta Crystallogr. E, 61, m2329 (2005).
- [25] H.G. Drexler, W. Dirks, R.A.F. MacLeod, H. Quentmeier, K. Steube, C.C. Uphoff (Eds.). DSMZ Catalogue of Human and Animal Cell Lines, 6th Ed., DSMZ GmbH, Braunschweig (1997).
- [26] H.G. Drexler, A.F. Roderick, C. McLeod, C. Uphoff. Leuk. Res., 23, 207 (1999).
- [27] S. Akiyama, Z. Chen, T. Sumizawa, T. Furukawa. Anti-Cancer Drug Des., 14, 143 (1999).
- [28] T. Miyashita, J.C. Reed. Blood, 81, 151 (1993).
- [29] T.C. Fisher, A.E. Milner, C.D. Gregory. Cancer Res., 53, 3321 (1993).